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Abstract. We analyse the antiferromagnetic ground state of various fullerenes, namely CN

cluster isomers, in the classical limit of the effective Heisenberg Hamiltonian. The valley
structures of the frustrated (semi-spin glass) ground state were determined and the probability
distributions of the spin-correlation functions were calculated. Also the energy barriers between
minima were estimated and these turned out to be relatively small. We use Monte Carlo
relaxation and simulated-annealing methods in the calculations.

1. Introduction

In this paper we provide a detailed analysis of the magnetic ground states of a series of
CN molecules, commonly known as fullerenes [1]. We found differences between the
magnetic ground-state properties of the various fullerenes. In our calculations we follow
a semi-classical Heisenberg model approach for finding the ground states and use the Ritz
variational method. The actual Monte Carlo relaxation procedure is based on the idea of
fast cooling and seems to be the most appropriate for the explanation of the experimental
observations. We also use the simulated-annealing technique. The results presented in this
work can be used as a starting point for further variational calculations for systems with
Hamiltonians where the kinetic electron correlations are included [2], and also furnish some
contribution to the understanding of the magnetic correlations observed experimentally in
fullerenes [1] and fullerides [3].

A group of experiments recently carried out concentrated on investigating the magnetic
susceptibility in the fullerides AxC60, where A is an alkali metal atom (K, Rb, Cs). They
show that these systems have short-range antiferromagnetic correlations [4, 5]; this can
be significant as regards the understanding of superconductivity in these systems. Similar
conclusions are suggested by the time dependence of the electron spin-resonance signal
(ESR) at the temperature of the transition [6] (to the superconducting state).

Another group of studies is constituted by papers describing experiments investigating
magnetic correlations in non-doped fullerenes. Buntaret al [7] (see also references therein)
have found that powders of C60 and C70 in the process of cooling and heating attain
irreversible magnetization at temperaturesT = 50–60 K, i.e. these systems behave like spin
glasses with frozen disorder. A singularity of the magnetic susceptibility at the temperature
T = 260 K in an order–disorder orientation phase transition of C60 crystal was reported by
Luo et al [8].

A third group of papers is devoted to magnetic correlations in the molecular crystal
TDAE–C60, in which antiferromagnetic correlations were revealed in an ESR experiment.
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Also, weak ferromagnetism [9] was found belowT = 16 K. An analogous phase for
TDAE–C70 does not occur [10].

Although the mechanisms of the antiferromagnetic correlations in the above-mentioned
groups seem to be different, their common feature is the presence of CN molecules which
are placed in the systems at relatively large distances (∼10 Å) from each other. Because
of this, correlations between shared electrons in external atomic shells in the systems can
be expected to possess properties similar to those occurring between correlatedπ -electrons
in isolated molecules.

The simplest Hamiltonian, which is commonly believed to be sufficient for explanation
of the basic physical properties ofπ -electrons in fullerenes, is the Hubbard model, in which
the microscopic parameters are the hopping integralt and the Coulomb repulsion energyU
acting on the carbon atom. Simple estimations [11–13] indicate that

U/t ≈ 3–5.

The latter means that theπ -electrons are in a state in which single-site repulsion slightly
dominates over kinetic correlations. Therefore, in fourth order of perturbation calculus the
Hubbard model (with itst/U ratio) effectively becomes at–J model. Because we consider
here the half-filled-band case, we can neglect the kinetic part of the model. The remaining
part, which is the quantum Heisenberg model, we solve in the quasi-classical approximation
numerically (and, at that level, exactly). So, our Hamiltonian is

Ĥ = −1

2

∑
i,j

Jij Ŝi · Ŝj (1)

where the non-zero values of the exchange integralsJij are proportional tot/U (we assume
that Jij 6= 0 for nearest neighbours only). That is why the results presented here can be
compared directly to the experimental results of Buntaret al [7], which suggest that pure
powdered C60 and C70 are spin glasses. The applicability of this Hamiltonian to fullerenes
was discussed by Coffey and Trugman [14] and Bergomiet al [16].

The frustrations of spin–spin interactions in CN molecules occur due to the presence
of pentagons and thus the specific spherical geometry. We also consider a hypothetical
example of a CN molecule—the truncated tetrahedron C12 (with four separated triangles
and four hexagons in the structure), which displays similar properties within this model.
The triangle bonds are highly frustrated [14, 15]. In real situations the frustrations can result
in a metastability (a semi-spin glass) of the ground state [17, 18].

In the classical limit of the Hamiltonian (1) it was found that the magnetic ground
states [14, 15] of C60 and C12 are exotic with non-trivial topology. However, this is
not the only result of frustrations caused by pentagons (or, respectively, triangles) with the
negative exchange couplings per bond in the systems. Within the framework of the classical
approximation we investigated the magnetic ground states of the molecules mentioned here.
We considered at first the valley structure of their magnetic ground states. It has been
revealed that the character of the ground state is either degenerate or metastable.

This paper is organized as follows. The next section describes two methods which we
used in the calculation of the minima—the metastable states and the energy barriers between
those minima. Both of these methods are based on the concept of cooling, which seems to
be the method of choice for Monte Carlo calculations of ground-state energy minima. In the
third section we present our results. The last section contains conclusions and a discussion
of our results.
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2. Methods of calculation

2.1. The ground state

The basic concept assumed in this investigation is that of treating the magnetic ground
states as a probabilistic space in which elementary events are single magnetic metastable
states with comparable energiesEl , which should satisfyE0 6 E1 6 · · · 6 Em where the
|Ei − Ej | are small, or degenerate ones [20]. As a result of cooling, a CN molecule can
be in a metastable state, taking a spin configuration with a probabilitypl (

∑
l pl = 1).

Disordered metastable states are characterized by Shanon information entropy:

K = −
∑
l

pl log(pl). (2)

K is bounded byK 6 Kmax = log(m), whereKmax is the hypothetical entropy of the
system with all metastable states having equal probability. Our aim is to calculate the
probabilitiespl of the spins configuration being in metastable states, and their energiesEl
for a CN molecule.

The approach is based on a computer procedure which simulates what one can expect
in a real experiment when a system that is at high temperature is rapidly cooled to a near-
zero temperature. The cooling process is expressed mathematically by a mappingF on a
subset� of trial states|ϕ〉 of the Hilbert spaceH of the HamiltonianĤ , equation (1). The
mapping should lead to a decrease of the system’s energy.

Basically our approach is a slightly modified Ritz variational method. We look for
a map F : � −→ � having the property that its successive iterationsϕn = Fn(ϕ),
Fn = F(F(· · ·F) · · ·), minimize the functionalR(ϕ) = 〈ϕ|Ĥ |ϕ〉/〈ϕ|ϕ〉 for every |ϕ〉 ∈ �.
The stable points ofF , i.e. the solutions of the equationϕ = F(ϕ), constitute the required
local minima in� where theϕ-parameters describe the trial state.

Within the framework presented, we define the mappingF on the set� of the coherent
spin states [21]|s〉 of the spin operator̂S: Ŝ|s〉 = S|s〉. The spinss are unit vectors.
Moreover,〈s|s〉 = s · s = 1. Thus, in such a case, the proposed description of fullerenes
is essentially equivalent to the consideration of the classical limit of the Hamiltonian (1).
A CN molecule is now described by a system ofN spinsS = (s1, s2, . . . , sN) and the
appropriate coherent state is a tensor product|S〉 = |s1〉|s2〉 · · · |sN 〉, i.e. ϕ = |S〉. Then

R(|S〉) = −1

2

∑
i,j

J̃ijsi · sj

whereJ̃ij = JijSiSj .
Finally, the procedure yields the set of equations

si = Fi(S) =
(∑

j

J̃ijsj

)/∣∣∣∣∣∣∣∣∑
j

J̃ijsj

∣∣∣∣∣∣∣∣ (3)

(i = 1, 2, . . . , N), where ||u|| is the length of the vectoru. It is well known [17, 18]
that the iterationsFn(S) are (for anyS) convergent to stable pointsS0l of the mappingF .
The mapping rotates the vectorssi , readjusting them to the direction of the local molecular
field

∑
j J̃ijsj at every sitei. ThereforeR(|Fn+l(S)〉) 6 R(|Fn(S)〉), andS0l are the local

minima of the functionalR.
We assumed (as a first approximation) that the parametersJij = |J | for the nearest-

neighbour sites, otherwise being equal to zero. This seems to be a safe assumption, since
the bond lengths in the hexagon and pentagon differ by 0.005 nm in CN molecules. Our
calculations show that these differences, which influence the exchange integral values, are
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not significant and have no actual impact on the number and structure of the metastable
states. In the first step of the numerical procedure we randomly chose a considerable number
N (N = 104 in our case) of pointsS′k (k = 1, . . . ,N ) distributed uniformly in the space
�, i.e. this was the ‘high-temperature’ starting point of the simulation. Then for everyS′k
we found

S0l = lim
n→∞Fn(S

′
k)

(k labels the spin configurations andl the metastable states), i.e. the iteration was stopped
when the differences between the successive values of the functionalR reached a set
accuracy (e.g. 10−8). The S0l thus obtained are all local minima of the functionalR.
This is what we call the Monte Carlo relaxation method [19, 20]. The procedure reflects a
fast-cooling process. In practice, the low-energy metastable spin configurationsS0l obtained
in this way can be regarded as the ground state [22]. The probabilitiespl can be calculated
using

pl ∼= Nl/N (4)

whereNl denotes the number of spin configurations which converge to thelth metastable
state, and obviouslyN is the total number of spin configurations.

The method described above is different to that used by Coffey and Trugman [14], in
which the authors found ground-state spin configurations by direct numerical minimization
of the energy over the spin variables. For technical reasons [17], so simple a procedure was
not able to reveal all possible local minima of the energy.

2.2. Energy barriers

An important, although difficult to calculate, characteristic of a metastable stateϕk of energy
Ek is its lifetime τk which, because of quantum tunnelling, is finite. As is common
knowledge, the higher the quasi-classical energy barriersEkl between the statesϕk and
other metastable statesϕl with lower energiesEl , the longer the lifetime.

We shall focus now on quasi-classical calculations ofEkl for two arbitrary magnetic
metastable statesϕk andϕl of a CN molecule.

Let us consider the setPkl , in the coherent-state phase space�, of all continuous paths
℘: [0, 1]→ �, such that℘(0) = ϕk and℘(1) = ϕl . We can easily notice that the equality

Ekl = inf
℘∈Pkl

(
max

06τ61
H(℘(τ))

)
(5)

holds, whereH(℘(τ)) denotes the value of the Hamiltonian (1) for the classical spin
system℘(τ) = S(τ ) = (s1(τ ), s2(τ ), . . . , sN(τ)). The only difficulty which arises as
regards formula (5) is that of the determination of the lower limit in the spacePkl . We
calculate the limit using the simulated-annealing algorithm [23]. We define the following
classical Hamiltonian for this purpose:

H̄ [℘] = max
06τ61

H(℘(τ)) (6)

where the setPkl is the phase space. ObviouslyEkl is the energy of the classical—
generally not unique—ground state℘0(τ ) of this Hamiltonian. The simulated-annealing
technique used for determination of the HamiltonianH̄ [℘] ground state consists in Monte
Carlo simulation of the equilibrium cooling process, with the thermodynamics of the system
described by the Gibbs probability density function

ρ[℘] = 1

Z
e−βH̄ [℘] (7)
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Table 1. Local energy minima (the valley structure of the ground states) of the series of fullerenes
in effective-coupling units,|J | per C atom. Asterisks indicate degeneracy of the energy valley.
(The geometrical structures of the fullerenes were taken as follows: for C32, C44, and C58 from
Curl and Smalley [25], for C60 isomers from Goodwin [26], for C70 and C78 from Saito and
Oshiyama [27], Diederich and Whetten [28], and Colt and Scuseria [30], for C76 isomers from
Colt and Scuseria [29], and for C84 isomers from Saitoet al [31]. This applies to all of the
tables in this paper.)

Isomer E0 E1 E2 E3 E4

C12 −1
C20 −1.1180 −1.0884∗
C32 −1.2345 −1.2162
C44 −1.2751 −1.2681∗ −1.2645
C50 −1.3106
C58 −1.3086∗ −1.3073∗

C60 D2h or Th −1.3090 −1.3009∗
D3d −1.3090 −1.3009∗ −1.3007
D5d −1.3090 −1.3009∗

C70 D5h −1.3335 −1.3278∗ −1.3277

C76 D2 −1.3440 −1.3366
D2d −1.3337∗ −1.3335∗

C78 C2v(I) −1.3463
C2v(II) −1.3482 −1.3453
D3 −1.3422 −1.3414 −1.3391∗
D3h(I) −1.3410∗ −1.3377
D3h(II) −1.3435∗ −1.3428 −1.3424∗ −1.3423 −1.3415∗

C84 D6h −1.3636 −1.3496 −1.3398
D2(flat) −1.3569 −1.3559 −1.3512
D2(round) −1.3584 −1.3527
Td −1.3559∗ −1.3554∗ −1.3552 −1.3519

whereβ is the inverse temperature andZ is the partition function:

Z =
∫
Pkl

dµ[℘] e−βH̄ [℘] . (8)

µ is a uniform measure on the path spacePkl . In the Monte Carlo calculation of the barriers,
we search all contorted lines consisting ofM-‘segments’.

Since the state space of the HamiltonianH for a CN molecule is anN -fold Cartesian
product of two-dimensional spheres (with unit radius), the ‘segments’ areN -fold Cartesian
products of great-circle cross sections. We can easily notice that with sufficiently largeM
(>100) such discretization of the Hamiltonian configuration spaceH̄ [℘] should not lead to
significant errors in the estimation of the energy barriersEkl . The remaining details of the
technique that we used are the same as in the work of Kirkpatricket al [24].

The results of the simulation are shown in table 4—see later.

3. Results

We found that C12, C50 and C78 (C2v(I) isomer) molecules are the only exceptions which
have one ground-state spin configuration. The ground states of the other CN molecules
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consist of two (C32, C58, C60) or three or even more (C44, C70, C76, C78, C84) spin-
configuration space valleys corresponding to slightly different energy valuesEl (table 1)
and separated by energy barriers. Moreover, some of them exhibit non-trivial degeneracy,
i.e. several non-equivalent spin configurations correspond to the given energy, and as
indicated in table 2, the net magnetic momentsM = ||∑N

i=1 si ||, computed in terms of
states of every valley, are not always equal to zero.

The metastable states that we obtained are similar for each CN molecule, i.e. the local
spinssi are almost tangents to the sphere or ellipsoid into which the appropriate molecule
can be inscribed.

Table 2. The net magnetic moments in the ground states of the respective fullerenes.

Isomer M0 M1 M2 M3 M4

C12 0
C20 0 0.0330
C32 0 0.0458
C44 0 0.1001 0
C50 0.2708
C58 0.2380 0.2105

C60 D2h or Th 0 0
D3d 0 0 0
D5d 0 0

C70 D5h 0 0.0099 0

C76 D2 0 0
D2d 0 0

C78 C2v(I) 0
C2v(II) 0 0.0054
D3 0 0.0169 0.2117
D3h(I) 0 0.0415
D3h(II) 0 0 0 0 0

C84 D6h 0 0 0
D2(flat) 0 0 0.0036
D2(round) 0 0
Td 0 0 0 0

As we have mentioned, the applied relaxation procedure is a reasonable characterization
of the effective freezing observed in a very fast experiment. The cooling process of a CN

molecule is equivalent to a relaxation of its spins to local equilibrium positions. From
the estimates of the relative frequencies of appearances of the configurationsS0l we could
obtain the probabilitiespl of finding the system in the given spin-energy valley (table 3).
Thus the method also enabled us to determine the probabilities of finding molecules in a
possible metastable ground-state spin configuration in a powder sample of given molecules
CN after rapid cooling.

Moreover, within this approach, we are able to calculate a probability distribution density
〈δ(x−A)〉 of a physical quantityA in the ground state (δ(x) is the Diracδ-function). That is,
the distribution can be obtained after differentiation of the appropriate Heavisideθ -functions:

〈θ(x − A)〉 = 1

N
∑
l

plθ(x − A(S0l)). (9)
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Table 3. Probabilities of finding the fullerenes in their respective energy valleys.

Isomer p0 p1 p2 p3 p4 Entropya

C12 1 0
C20 0.6461 0.3539 0.6498
C32 0.9770 0.0230 0.1095
C44 04614 0.5382 0.0004 0.6935
C50 1 0
C58 0.8758 0.1242 0.3752

C60 D2h or Th 0.5716 0.4284 0.6829
D3d 0.5758 0.4240 0.0002 0.6833
D5d 0.5830 0.4170 0.6793

C70 D5h 0.6752 0.3244 0.0004 0.6335

C76 D2 0.8866 0.1134 0.3536
D2d 0.7094 0.2906 0.6027

C78 C2v(I) 1 0
C2v(II) 0.9998 0.0002 0.0019
D3 0.5996 0.1936 0.2068 0.9505
D3h(I) 0.9998 0.0002 0.0019
D3h(II) 0.2370 0.1754 0.3196 0.0002 0.2678 1.3656

C84 D6h 0.9230 0.0548 0.0222 0.3176
D2(flat) 0.4884 0.3894 0.1222 0.9741
D2(round) 0.8364 0.1636 0.4456
Td 0.5893 0.2966 0.0001 0.1140 0.9206

a The entropy was calculated using formula (2). The maximal entropiesKmax for two, three,
four, and five metastable states are equal respectively to 0.6931, 1.0986, 1.3863, and 1.6094.

As an example, we considered the angle operator

φ̂ij = arccos(S−2Ŝi · Ŝj ) (10)

defined by electron spins at sitesi and j . The results of Monte Carlo calculations of the
probability distributionφ̂ij of the correlations with respect to a nearest-neighbour pair of
spins on a pentagon are displayed in figure 1.

The magnetic ground states of CN molecule isomers are frustrated because there are
pentagons with negative exchange couplings per bond in the systems. The C60 molecule has
three isomers, denoted as D2h (Th), D3d and D5d. In all cases the pentagons are separated.
The D2h form, the soccer ball, is observed in solids. The D3d and D5d forms are observed
in solutions. This variety is caused by Jahn–Teller distortion. Since the separation of the
frustrated pentagons is observed in C60 or larger molecules, i.e. when every pentagon of the
molecular structure is surrounded by hexagons only, the spin frustrations of the respective
pentagons in this case affect each other only slightly. This leads to differences in the
magnetic ground-state properties between the C60, C70, and C84 molecules and the others.
This is particularly apparent when comparing the results gathered together in table 2 and
the information about the distributions of angles between neighbouring spins on pentagons
of the molecules (figure 1). Only in the case of the C60, C70, and C84 molecules are the
distributions peaked around the angle 144◦ (i.e. 4π/5) as should be expected when different
pentagons do not frustrate each other any more [14]). For some isomers of C76 and C78

molecules, the angle does not follow this pattern. Evidently, the C58 molecule constitutes an
intermediate case. Its two local energy minima (valleys) are degenerate, the angles between
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Figure 1. The probability distribution (density) of the angle made by a nearest-neighbour pair
of spins on a pentagon of a CN free molecule.

neighbouring spins on pentagons are quite different to those in any other case, and each
ground-state spin-configuration net magnetic moment is non-zero. This molecule is just the
last one with non-separated pentagons.

From the comparison of our results with those presented by Coffey and Trugman [14],
we obtained the valley structure of the ground states of the fullerenes (local minima of the
energy were found). We obtained exactly the same lowest-energy spin configuration for
all isomers of C60. This configuration corresponds to the situation in which there is no
frustration beyond that of an elementary pentagon, and spins on a non-pentagon bond are
antiparallel. The energy obtained is the natural lower bound in this case [14]. Any other
frustrations would increase the energy. However, we found that the system has another local
energy minimum, close to the first one (table 1). Moreover, the probabilities of finding the
molecule after its rapid cooling in the two minima are comparable (see table 3). Thus we
cannot be sure whether one of them is distinguished. In particular the metastable states
in solids (isomer D2h or Th) and solutions (isomers D3d and D5d) are virtually the same.
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Table 4. The estimates of the energy barriers, calculated in the units|J | per site, obtained
by the simulated-annealing Monte Carlo method. The hooked arrows indicate barriers between
values in neighbouring columns from the first line. (Asterisks indicate degeneracy of the energy
valley.)

Isomer E0 E1 E2

C58 −1.3086∗ −1.3073∗
↪→ ∼ −1.3071

C60 D2h or Th −1.3090 −1.3009∗
↪→ ∼ −1.2788

D3d −1.3090 −1.3009∗ −1.3007
↪→ ∼ −1.2793 ∼ −1.2824

↪→ ∼ −1.2999

D5d −1.3090 −1.3009∗
↪→ ∼ −1.2788

C70 D5h −1.3335 −1.3278∗ −1.3277
↪→ ∼ −1.3156 ∼ −1.3107

↪→ ∼ −1.2987

C76 D2 −1.3440 −1.3366
↪→ ∼ −1.3107

D2d −1.3337∗ −1.3335∗
↪→ ∼ −1.2291

Unlike those carried out by Coffey and Trugman [14], our investigations show that the
C84 molecule does reach the above-mentioned lower bound for the energy in this case,
as well. Moreover, as can be seen in table 3, the lowest-energy spin arrangement is the
most probable, and thus is distinguished. This seems reasonable, because this molecule
has the most hexagons preventing its pentagons from interference with each other. In our
opinion, the calculations presented imply that in principle some magnetic properties of C60

and C84 are similar. Therefore, we do not confirm the conclusion of Coffey and Trugman
[14] that the C60 molecule is unique. Notice that these are the only cases with zero net
magnetic moment among all of the ground states (table 2). In the case of the C70 system
our conclusions in general agree with those of Coffey and Trugman [14]. The molecule
does not reach its lower bound energy, although our lowest energy is about 0.1% lower
than that obtained by Coffey and Trugman [14].

The energy barriers for some molecules are presented in table 4. Because the energy
barriers heights are of order|J | in the quantum approach, the tunnelling effect will occur,
and thus there will be a common quantum spin state which can be treated as an instanton.

4. Conclusions

In this work we have presented a calculation of the magnetic ground states of different
isomers of fullerenes, CN , in the quasi-classical approximation. We found that the ground
states of these systems generally (i) have several valleys, (ii) are frustrated (with comparable
energy order) and that (iii) many of them have net magnetic momentM = 0. The properties
of the informational entropy suggest that effectively we have two-valley systems, but with
growing number of carbon atoms the number of valleys effectively tends to three (cf. table 3).
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The heights of the energy barrier between the valleys are of order|J |. Because of this,
we can expect that in the quantum picture the tunnelling effect will occur, and thus they
will merge into a single quantum (mixed) state—an instanton. These results can explain the
properties exhibited by C60 and C70 powders in the process of cooling and heating, where
they attain irreversible magnetization at temperaturesT = 50–60 K and behave like spin
glasses with frozen disorder [7].

The question of a metastable character of the ground states of fullerenes that were found
needs a more refined treatment. Obviously, either quantum spin fluctuations or thermal
activation as well as interactions with molecule vibrations and/or rotations should be taken
into account to describe a mechanism for a possible decay and mixing of the states [22].
Recently it was found that in C60 single crystal there is a discontinuity of the magnetic
susceptibility in the temperature range in which the cooperative orientation ordering phase
transition occurs [8].

Because in the Hubbard model the hopping integrals and Coulomb repulsion are of the
same order of magnitude [14], the kinetic energy contribution might be significant. That
is why we expect electron motion to cause the fullerene ground state to be of spin-liquid
type with clearly marked antiferromagnetic correlations rather than instanton-like (frustrated
with quantum tunnelling). Indeed, the calculations for the Gutzwiller state carried out by us,
where as the starting point for the variational calculations we used the results presented here,
confirm that this is the case for C60 molecules [2]. This also agrees with the experimental
results presented by Kieflet al [34] in their muon study, in which no intrinsic magnetic
moments were found. Our calculations also indicate that the ground state of spin-density-
wave type is unstable. This result is the opposite of what was described by Bergomiet al
[16] but the authors carried out their calculations using the Hartree–Fock approximation.

It seems to us that non-doped nanotubes with half-filled bands [32, 33] should exhibit
magnetic properties similar to those of fullerenes. In open nanotubes the ground state should
be non-frustrated with net magnetic momentM = 0, because they are ‘wrapped’ fragments
of graphite layers (they just bear the properties of the layers). The ends of closed nanotubes
have pentagons which incur frustrations. Thus, we can expect them to have frustrated
magnetic ground states, like fullerenes.
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